3.524 \(\int \frac{\cos (c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=173 \[ \frac{(9 A-5 B+C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{(3 A-2 B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{3/2} d}+\frac{(3 A-B+C) \sin (c+d x)}{2 a d \sqrt{a \sec (c+d x)+a}}-\frac{(A-B+C) \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

-(((3*A - 2*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d)) + ((9*A - 5*B + C)*ArcTan
[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A - B + C)*Sin[c + d*x]
)/(2*d*(a + a*Sec[c + d*x])^(3/2)) + ((3*A - B + C)*Sin[c + d*x])/(2*a*d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.416723, antiderivative size = 173, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 41, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.146, Rules used = {4084, 4022, 3920, 3774, 203, 3795} \[ \frac{(9 A-5 B+C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{(3 A-2 B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{3/2} d}+\frac{(3 A-B+C) \sin (c+d x)}{2 a d \sqrt{a \sec (c+d x)+a}}-\frac{(A-B+C) \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

-(((3*A - 2*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d)) + ((9*A - 5*B + C)*ArcTan
[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A - B + C)*Sin[c + d*x]
)/(2*d*(a + a*Sec[c + d*x])^(3/2)) + ((3*A - B + C)*Sin[c + d*x])/(2*a*d*Sqrt[a + a*Sec[c + d*x]])

Rule 4084

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[((a*A - b*B + a*C)*Cot[e + f*x]*(a + b*Cs
c[e + f*x])^m*(d*Csc[e + f*x])^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m +
1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m - n)
))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4022

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rule 3920

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rubi steps

\begin{align*} \int \frac{\cos (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac{(A-B+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{\int \frac{\cos (c+d x) \left (a (3 A-B+C)-\frac{1}{2} a (3 A-3 B-C) \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac{(A-B+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{(3 A-B+C) \sin (c+d x)}{2 a d \sqrt{a+a \sec (c+d x)}}+\frac{\int \frac{-a^2 (3 A-2 B)+\frac{1}{2} a^2 (3 A-B+C) \sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{2 a^3}\\ &=-\frac{(A-B+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{(3 A-B+C) \sin (c+d x)}{2 a d \sqrt{a+a \sec (c+d x)}}-\frac{(3 A-2 B) \int \sqrt{a+a \sec (c+d x)} \, dx}{2 a^2}+\frac{(9 A-5 B+C) \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac{(A-B+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{(3 A-B+C) \sin (c+d x)}{2 a d \sqrt{a+a \sec (c+d x)}}+\frac{(3 A-2 B) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a d}-\frac{(9 A-5 B+C) \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{2 a d}\\ &=-\frac{(3 A-2 B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a^{3/2} d}+\frac{(9 A-5 B+C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{(A-B+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{(3 A-B+C) \sin (c+d x)}{2 a d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 2.37418, size = 179, normalized size = 1.03 \[ -\frac{\tan \left (\frac{1}{2} (c+d x)\right ) \left (2 \sin ^2\left (\frac{1}{2} (c+d x)\right ) (2 A \cos (c+d x)+3 A-B+C)+\sqrt{2} (9 A-5 B+C) \cos ^2\left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)-1} \tan ^{-1}\left (\frac{\sqrt{\sec (c+d x)-1}}{\sqrt{2}}\right )-4 (3 A-2 B) \cos ^2\left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)-1} \tan ^{-1}\left (\sqrt{\sec (c+d x)-1}\right )\right )}{2 a d (\cos (c+d x)-1) \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

-((-4*(3*A - 2*B)*ArcTan[Sqrt[-1 + Sec[c + d*x]]]*Cos[(c + d*x)/2]^2*Sqrt[-1 + Sec[c + d*x]] + Sqrt[2]*(9*A -
5*B + C)*ArcTan[Sqrt[-1 + Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^2*Sqrt[-1 + Sec[c + d*x]] + 2*(3*A - B + C +
 2*A*Cos[c + d*x])*Sin[(c + d*x)/2]^2)*Tan[(c + d*x)/2])/(2*a*d*(-1 + Cos[c + d*x])*Sqrt[a*(1 + Sec[c + d*x])]
)

________________________________________________________________________________________

Maple [B]  time = 0.352, size = 889, normalized size = 5.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x)

[Out]

-1/4/d/a^2*(-1+cos(d*x+c))*(6*A*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*2^(1/2)*cos(d*x+c)-4*B*cos(d*x+c)*2^(1/2)*sin(d*x+c)*(-2*cos
(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))+
6*A*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(
d*x+c)/cos(d*x+c))*sin(d*x+c)+9*A*cos(d*x+c)*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+
cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-4*B*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/
(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-5*B*cos(d*x+c)*si
n(d*x+c)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)+C*cos(d*x+c)*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/si
n(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+9*A*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d
*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-4*A*cos(d*x+c)^3-5*B*ln(-(-(-2*cos(d*x+c)
/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+C*
ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*sin(d*x+c)-2*A*cos(d*x+c)^2+2*B*cos(d*x+c)^2-2*C*cos(d*x+c)^2+6*A*cos(d*x+c)-2*B*cos(d*x+c)+2*C*cos(d*x
+c))*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/sin(d*x+c)^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*cos(d*x + c)/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 60.3448, size = 1619, normalized size = 9.36 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(sqrt(2)*((9*A - 5*B + C)*cos(d*x + c)^2 + 2*(9*A - 5*B + C)*cos(d*x + c) + 9*A - 5*B + C)*sqrt(-a)*log(
(2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2
*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*((3*A - 2*B)*cos(d*x + c)^2 + 2*(3*A - 2*B)*co
s(d*x + c) + 3*A - 2*B)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*
cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) - 4*(2*A*cos(d*x + c)^2 + (3*A - B + C)*co
s(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c)
 + a^2*d), -1/4*(sqrt(2)*((9*A - 5*B + C)*cos(d*x + c)^2 + 2*(9*A - 5*B + C)*cos(d*x + c) + 9*A - 5*B + C)*sqr
t(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 4*((3*A - 2
*B)*cos(d*x + c)^2 + 2*(3*A - 2*B)*cos(d*x + c) + 3*A - 2*B)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x
+ c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*(2*A*cos(d*x + c)^2 + (3*A - B + C)*cos(d*x + c))*sqrt((a*cos(d
*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \sec{\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \cos{\left (c + d x \right )}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*cos(c + d*x)/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError